Uncertainty in extrapolations of predictive land-change models

نویسندگان

  • Robert Gilmore Pontius
  • Joseph Spencer
چکیده

This paper gives a technique to extrapolate the anticipated accuracy of a prediction of land-use and land-cover change (LUCC) to any point in the future. The method calibrates a LUCC model with information from the past in order to simulate a map of the present, so that it can compute an objective measure of validation with empirical data. Then it uses that observed measurement of predictive accuracy to anticipate how accurately the model will predict a future landscape. The technique assumes that the accuracy of the model will decay to randomness as the model predicts farther into the future and estimates how fast the decay in accuracy will occur based on prior model performance. Results are presented graphically in terms of percentage of pixels classified correctly so that nonexperts can interpret the accuracy visually. The percentage correct is budgeted by three components: agreement due to chance, agreement due to the predicted quantity of each land category, and agreement due to the predicted location of each land category. The percentage error is budgeted by two components: disagreement due to the predicted location of each land category and disagreement due to the predicted quantity of each land category. Therefore, model users can see the sources of the accuracy and error of the model. The entire analysis is computable for multiple resolutions, so users can see how the results are sensitive to changes in scale. We illustrate the method with an application of the land-use change model Geomod to Central Massachusetts, where the predictive accuracy of the model decays to 90% over fourteen years and to near complete randomness over 200 years. DOI:10.1068/b31152

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the uncertainty of land-cover extrapolations while constructing a raster map from tabular data

This paper presents novel techniques to estimate the uncertainty in extrapolations of spatially-explicit land-change simulation models. We illustrate the concept by mapping a historic landscape based on: 1) tabular data concerning the quantity in each land cover category at a distant point in time at the stratum level, 2) empirical maps from more recent points in time at the grid cell level, an...

متن کامل

Design and Implementation of Integrated System for Urban Land Use Change Modeling

According to urban environment complexity and dynamism and need to targeted land use change, incorporation GIS and PSS in the form of Spatial Planning Support Systems is inevitable. The aim of this study is to develop a spatial planning support system for urban land uses change (ULCMS), such that planners can enter expert knowledge in the form of desired criteria and weights and see their influ...

متن کامل

The SLEUTH Land Use Change Model: A Review

Land use change is driven by interaction in space and time between humans and the environment that can be captured by computer simulation models (Veldkamp and Verburg, 2004). In the last few decades, land use change models have played an important role in understanding the causes, mechanisms and consequences of land use dynamics. SLEUTH is an open source cellular automata based land use change ...

متن کامل

Estimating Demand for Industrial and Commercial Land Use Given Economic Forecasts

Current developments in the field of land use modelling point towards greater level of spatial and thematic resolution and the possibility to model large geographical extents. Improvements are taking place as computational capabilities increase and socioeconomic and environmental data are produced with sufficient detail. Integrated approaches to land use modelling rely on the development of int...

متن کامل

Uncertainty in assessing the impacts of global change with coupled dynamic species distribution and population models.

Concern over rapid global changes and the potential for interactions among multiple threats are prompting scientists to combine multiple modelling approaches to understand impacts on biodiversity. A relatively recent development is the combination of species distribution models, land-use change predictions, and dynamic population models to predict the relative and combined impacts of climate ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003